Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3689322.v1

ABSTRACT

The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of herd immunity. Here, we isolate spike binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. 28 potent antibodies were isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5 SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called ‘FLip’mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.

2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2684849.v1

ABSTRACT

Commercially developed monoclonal antibodies (mAb) have been effective in the prevention or treatment of SARS-CoV-2 infection1-3 but the rapid antigenic evolution of the Omicron sub-lineages has reduced their activity4-8 and they are no longer licensed for use in many countries. Here, we isolate spike binding monoclonal antibodies from vaccinees who suffered vaccine break-through infections with Omicron sublineages BA.4/5. We find that it is possible for antibodies targeting highly mutated regions to recover broad activity through allosteric effects (mAb BA.4/5-35) and characterise a pair of potent mAbs with extremely broad neutralization against current and historical SARS-CoV-2 variants. One, mAb BA.4/5-2, binds at the back of the left shoulder of the receptor binding domain (RBD) in an area which has resisted mutational change to date. The second, mAb BA.4/5-5, binds a conserved epitope in sub-domain 1 (SD1). The isolation of this pair of antibodies with non-overlapping epitopes shows that potent and extremely broadly neutralizing antibodies are still generated following infection and SD1 directed mAbs may increase the resilience of mAb therapeutics/prophylactics against SARS-CoV-2.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.14.500063

ABSTRACT

Summary Some COVID-19 patients are unable to clear their infection or are at risk of severe disease, requiring treatment with neutralising monoclonal antibodies (nmAb) and/or antivirals. The rapid roll-out of novel therapeutics means there is limited understanding of the likely genetic barrier to drug resistance. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to the detection of emerging drug resistance. Here we report the accrual of mutations in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the epitopes of the respective nmAbs. For casirivimab+imdevimab these are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Subject(s)
COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.21.492554

ABSTRACT

The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.

SELECTION OF CITATIONS
SEARCH DETAIL